
	 

1. Only the request method and URI by default. Modern implementations supporting the "digest" property can protect the request body as well. 
2. SameSite attribute turns this into a Yes. 
3. __Secure- and __Host- 
4. JWT provides integrity protection for the token itself. 
5. This makes it impossible for an active network attacker to spy on the connection. 
6. At least 2048 bits for RSA and 256 bits for ECC.

The Web Authentication Guide Cheatsheet

Complexity Reliance on 
HTTPS

Protection against
Use-cases Taking care

CSRF Replay Tampering

HTTP Basic Easy Full No No No
• No session management 
• Read-only resource 
• Backend compatibility

• Hash secrets on server side 
• Use with TLS

HTTP Digest Medium Confidentiality No Yes Yes1 • Need something stronger than Basic 
w/ high compatibility

• Use full featured libraries 
• Use a unique realm

Cookies Easy Full No2 No No • Full blown session management
• Set the correct flags: Secure, HTTP 

Only, SameSite 
• Add prefixes for added security3

Bearer Tokens Easy Full4 Yes No No4
• Limited session management needs 
• OAuth and other backend 

integrations

• Use OAuth for integrations 
• Keep the JWT secret safe 
• Utilize short-lived tokens 
• Consider using access and refresh 

tokens

Signature 
Schemes Hard Confidentiality Yes Yes Yes

• Use on the backend between servers 
• Use to provide pre-signed URLs

• Choose your library carefully 
• Keep secrets safe

TLS Client 
Certificates Hard Full5 No Yes Yes

• Elevated security requirements 
• Use on the backend between servers

• Harden TLS settings 
• Use strong keys6

CC-BY-SA-4.0 https://www.securitydrops.com


